Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.06.494494

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may keep patients in a clinically asymptomatic state by blocking cellular innate antiviral immunity, but the molecular mechanism remains unclear. Here, we screened the viral proteins of SARS-CoV-2 and found that the spike (S) protein inhibits the activation of interferon-stimulated genes (ISGs) and even reduces the expression of these genes to below background values. Mechanistically, the S protein interacted with STAT1, STAT2, and IRF9 and impedes the phosphorylation of STAT1/STAT2, thus preventing the formation of the interferon-stimulating gene factor 3 (ISGF3) complex and inhibiting the downstream production of Interferon-stimulated genes (ISGs). Remarkably, we also have found that the inhibitory mechanism of the S protein was conservative among SARS-CoV-2 variants and other human coronaviruses, including SARS-CoV, MERS-CoV, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Truncation studies indicated that the most conserved S2 domain played a major inhibitory role. Altogether, our findings unveil a new mechanism by which SARS-CoV-2 S protein attenuated the host's antiviral immune response and provide new insights into the pathogenic mechanism of coronavirus.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
2.
Clin Respir J ; 16(6): 441-449, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1853689

ABSTRACT

INTRODUCTION: Renal impairment is a common complication in coronavirus disease 2019 (COVID-19), although its prognostic significance remains unknown. OBJECTIVES: This study determines the impact of early renal impairment on the clinical outcome of COVID-19. METHODS: Patients diagnosed with COVID-19 and hospitalized in Xiaogan Central Hospital from 20 January to 29 February 2020 were retrospectively included and grouped into two cohorts (cohort with normal renal function and cohort with renal insufficiency) based on the renal function detected on admission. Records of clinical manifestation, laboratory findings and clinical outcome were collected and compared between these two cohorts. RESULTS: A total 543 COVID-19 patients were included. Among these patients, 70 patients developed early renal impairment, with an incidence of 12.89%. A significantly higher white blood cell (WBC) count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum creatine (Cr), blood urine nitrogen (BUN) and brain natriuretic peptide (BNP) and a significantly lower blood platelet (PLT), lymphocyte count, prealbumin and albumin (ALB) were detected in the cohort with renal insufficiency (P < 0.05). Patients with early renal impairment were also associated with higher incidences of haematuria/proteinuria, higher incidences of mortality and prolonged hospitalization duration. The independent risk factors for in-hospital death included age >65 years old, complication of diabetes, renal impairment on admission (Cr > 73 µmol/L and eGFR < 60 ml/min 1.73 m2 ), WBC > 9.5 × 109 /L and ALB < 35 g/L. CONCLUSION: Early renal impairment is associated with higher risk of in-hospital death for patients with COVID-19. Risk stratification according to renal function can better guide the clinical management of COVID-19.


Subject(s)
COVID-19 , Renal Insufficiency , Aged , COVID-19/complications , COVID-19/epidemiology , Hospital Mortality , Humans , Renal Insufficiency/epidemiology , Retrospective Studies , SARS-CoV-2
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.10.479867

ABSTRACT

Advanced mRNA vaccines play vital roles against SARS-CoV-2. However, due to the poor stability, most current mRNA delivery platforms need to be stored at -20 {degrees}C or -70 {degrees}C. Here we present lyophilized thermostable mRNA loaded lipid nanoparticles, which could be stored at room temperature with long-term stability. We demonstrate the applicability of lyophilization techniques to different mRNA sequences and lipid components. Three lyophilized vaccines targeting wild-type, Delta and Omicron SARS-CoV-2 variant were prepared and demonstrated to be able induce high-level of IgG titer and neutralization response. In the Delta challenge in vivo experiment, the lyophilized mRNA vaccine successfully protected the mice from infection and clear the virus. This lyophilization platform could significantly improve the accessibility of mRNA vaccine or therapeutics, particularly in remote regions.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.24.477490

ABSTRACT

Middle East Respiratory Syndrome coronavirus (MERS-CoV) and several bat coronaviruses employ Dipeptidyl peptidase-4 (DPP4) as their functional receptors. However, the receptor for NeoCoV, the closest MERS-CoV relative yet discovered in bats, remains enigmatic. In this study, we unexpectedly found that NeoCoV and its close relative, PDF-2180-CoV, can efficiently use some types of bat Angiotensin-converting enzyme 2 (ACE2) and, less favorably, human ACE2 for entry. The two viruses use their spikes' S1 subunit carboxyl-terminal domains (S1-CTD) for high-affinity and species-specific ACE2 binding. Cryo-electron microscopy analysis revealed a novel coronavirus-ACE2 binding interface and a protein-glycan interaction, distinct from other known ACE2-using viruses. We identified a molecular determinant close to the viral binding interface that restricts human ACE2 from supporting NeoCoV infection, especially around residue Asp338. Conversely, NeoCoV efficiently infects human ACE2 expressing cells after a T510F mutation on the receptor-binding motif (RBM). Notably, the infection could not be cross-neutralized by antibodies targeting SARS-CoV-2 or MERS-CoV. Our study demonstrates the first case of ACE2 usage in MERS-related viruses, shedding light on a potential bio-safety threat of the human emergence of an ACE2 using 'MERS-CoV-2' with both high fatality and transmission rate.


Subject(s)
Coronavirus Infections , Infections
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1292418.v1

ABSTRACT

Middle East Respiratory Syndrome coronavirus (MERS-CoV) and several bat coronaviruses employ Dipeptidyl peptidase-4 (DPP4) as their functional receptors. However, the receptor for NeoCoV, the closest MERS-CoV relative yet discovered in bats, remains enigmatic. In this study, we unexpectedly found that NeoCoV and its close relative, PDF-2180-CoV, can efficiently use some types of bat Angiotensin-converting enzyme 2 (ACE2) and, less favorably, human ACE2 for entry. The two viruses use their spikes' S1 subunit carboxyl-terminal domains (S1-CTD) for high-affinity and species-specific ACE2 binding. Cryo-electron microscopy analysis revealed a novel coronavirus-ACE2 binding interface and a protein-glycan interaction, distinct from other known ACE2-using viruses. We identified a molecular determinant close to the viral binding interface that restricts human ACE2 from supporting NeoCoV infection, especially around residue Asp338. Conversely, NeoCoV efficiently infects human ACE2 expressing cells after a T510F mutation on the receptor-binding motif (RBM). Notably, the infection could not be cross-neutralized by antibodies targeting SARS-CoV-2 or MERS-CoV. Our study demonstrates the first case of ACE2 usage in MERS-related viruses, shedding light on a potential bio-safety threat of the human emergence of an ACE2 using "MERS-CoV-2" with both high fatality and transmission rate.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.21.473594

ABSTRACT

SARS-CoV-2 continued to spread globally along with different variants. Here, we systemically analyzed viral infectivity and immune-resistance of SARS-CoV-2 variants to explore the underlying rationale of viral mutagenesis. We found that the Beta variant harbors both high infectivity and strong immune resistance, while the Delta variant is the most infectious with only a mild immune-escape ability. Remarkably, the Omicron variant is even more immune-resistant than the Beta variant, but its infectivity increases only in Vero E6 cells implying a probable preference for the endocytic pathway. A comprehensive analysis revealed that SARS-CoV-2 spike protein evolved into distinct evolutionary paths of either high infectivity plus low immune resistance or low infectivity plus high immune resistance, resulting in a narrow spectrum of the current single-strain vaccine. In light of these findings and the phylogenetic analysis of 2674 SARS-CoV-2 S-protein sequences, we generated a consensus antigen (S6) taking the most frequent mutations as a pan-vaccine against heterogeneous variants. As compared to the ancestry SWT vaccine with significantly declined neutralizations to emerging variants, the S6 vaccine elicits broadly neutralizing antibodies and full protections to a wide range of variants. Our work highlights the importance and feasibility of a universal vaccine strategy to fight against antigen drift of SARS-CoV-2.

7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.03.467182

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to significant public health, economic and social problems. Development of effective vaccines is still a priority to contain the virus and end the global pandemic. In this study, we reported that ReCOV, a recombinant trimeric NTD and RBD two-component SARS-CoV-2 subunit vaccine adjuvanted with BFA03 (an AS03-like squalene adjuvant), induced high levels of neutralizing antibodies against SARS-CoV-2 and the circulating variants in mice, rabbits and rhesus macaques. Notably, two-dose immunizations of ReCOV provided complete protection against challenge with SARS-CoV-2 in hACE2 transgenic mice and rhesus macaques, without observable antibody-dependent enhancement of infection. These results support further clinical development of ReCOV and the vaccine is currently being evaluated in a phase I clinical trial in New Zealand ( NCT04818801 ).


Subject(s)
Coronavirus Infections , COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.07.455523

ABSTRACT

SARS-CoV-2 infection is initiated with Spike glycoprotein binding to the receptor of human angiotensin converting enzyme 2 via its receptor binding domain. Blocking this interaction is considered as an effective approach to inhibit virus infection. Here we report the discovery of a neutralizing nanobody, VHH60, directly produced from a humanized synthetic nanobody library. VHH60 competes with human ACE2 to bind the receptor binding domain of the Spike protein with a KD of 2.56 nM, inhibits infections of both live SARS-CoV-2 and pseudotyped viruses harboring wildtype, escape mutations and prevailing variants at nanomolar level. VHH60 also suppresses SARS-CoV-2 infection and propagation 50-fold better and protects mice from death two times longer than that of control group after live virus inoculation on mice. VHH60 therefore is a powerful synthetic nanobody with a promising profile for disease control against COVID19.


Subject(s)
COVID-19 , Tumor Virus Infections
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.09.451748

ABSTRACT

5-Methylcytosine (m 5 C) is a widespread post-transcriptional RNA modification and is reported to be involved in manifold cellular responses and biological processes through regulating RNA metabolism. However, its regulatory role in antiviral innate immunity has not yet been elucidated. Here, we report that NSUN2, a typical m 5 C methyltransferase, can negatively regulate type I interferon responses during viral infection. NSUN2 specifically mediates m 5 C methylation of IRF3 mRNA and accelerates its degradation, resulting in low levels of IRF3 and downstream IFN-β production. Knockout or knockdown of NSUN2 could enhance type I interferon responses and downstream ISG expression after viral infection in vitro . And in vivo , the antiviral innate responses is more dramatically enhanced in Nsun2 +/− mice than in Nsun2 +/+ mice. Four highly m 5 C methylated cytosines in IRF3 mRNA were identified, and their mutation could enhance the cellular IRF3 mRNA levels. Moreover, infection with Sendai virus (SeV), vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), Zika virus (ZIKV), or especially SARS-CoV-2 resulted in a reduction in endogenous levels of NSUN2. Together, our findings reveal that NSUN2 serves as a negative regulator of interferon response by accelerating the fast turnover of IRF3 mRNA, while endogenous NSUN2 levels decrease after viral infection to boost antiviral responses for the effective elimination of viruses. Our results suggest a paradigm of innate antiviral immune responses ingeniously involving NSUN2-mediated m 5 C modification.


Subject(s)
Vesicular Stomatitis
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.16.21258673

ABSTRACT

Most COVID-19 patients can build effective humoral immunity against SARS-CoV-2 after recovery . However, it remains unknown how long the protection can maintain and how efficiently it can protect people from the reinfection of the emerging SARS-CoV-2 variants. Here we evaluated the sera from 248 COVID-19 convalescents around one year post-infection in Wuhan, the earliest epicenter of SARS-CoV-2. We demonstrated that the SARS-CoV-2 immunoglobulin G (IgG) maintains at a high level and potently neutralizes the infection of the original strain (WT) and the B.1.1.7 variant in most patients. However, they showed varying degrees of efficacy reduction against the other variants of concern (P.1, B.1.525, and especially B.1.351) in a patient-specific manner. Mutations in RBD including K417N, E484K, and E484Q/L452R (B.1.617) remarkably impair the neutralizing activity of the convalescents' sera. Encouragingly, we found that a small fraction of patients' sera showed broad neutralization potency to multiple variants and mutants, suggesting the existence of broadly neutralizing antibodies recognizing the epitopes beyond the mutation sites. Our results suggest that the SARS-CoV-2 vaccination effectiveness relies more on the timely re-administration of the epitope-updated vaccine than the durability of the neutralizing antibodies.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.14.335893

ABSTRACT

The upcoming flu season in the northern hemisphere merging with the current COVID-19 pandemic may raise a potentially severe threat to public health. However, little is known about the consequences of the co-infection of influenza A virus (IAV) and SARS-CoV-2. Through experimental co-infection of IAV with either pseudotyped or SARS-CoV-2 live virus, we found that IAV pre-infection significantly promoted the infectivity of SARS-CoV-2 in a broad range of cell types. Intriguingly, such enhancement of SARS-CoV-2 infectivity was only seen under co-infection with IAV but not with several other viruses including Sendai virus, human rhinovirus, human parainfluenza virus, human respiratory syncytial virus, or human enterovirus 71. IAV infection rather than interferon signaling induced elevated expression of ACE2 essential for such enhancement of SARS-CoV-2 infectivity. Remarkably, we further confirmed that the pre-infection of IAV indeed resulted in an increased SARS-CoV-2 viral load and more severe lung damage in hACE2-transgenic mice. This study illustrates that the co-infection of IAV aggravates SARS-CoV-2 infection and disease severity, which in turn suggests that preventing the convergence of flu season and COVID-19 pandemic would be of great significance.


Subject(s)
Coinfection , Lung Diseases , Severe Acute Respiratory Syndrome , COVID-19 , Influenza, Human
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.08.284737

ABSTRACT

Bats are the suggested natural hosts for severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2, the latter of which caused the coronavirus disease 2019 (COVID-19) pandemic. The interaction of viral Spike proteins with their host receptor angiotensin-converting enzyme 2 (ACE2) is a critical determinant of potential hosts and cross-species transmission. Here we use virus-host receptor binding and infection assays to show that ACE2 orthologs from 24, 21, and 16 of 46 phylogenetically diverse bat species - including those in close and distant contact with humans - do not support entry of SARS-CoV, SARS-CoV-2, and both of these coronaviruses, respectively. Furthermore, we used genetic and functional analyses to identify genetic changes in bat ACE2 receptors associated with viral entry restrictions. Our study demonstrates that many - if not most - bat species are not potential hosts of SARS-CoV and SARS-CoV-2, and provides important insights into pandemic control and wildlife conservation.


Subject(s)
COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.11.983056

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of coronavirus SARS-CoV-2. Existing direct-acting antiviral (DAA) drugs cannot be applied immediately to new viruses because of virus-specificity, and the development of new DAA drugs from the beginning is not timely for outbreaks. Thus, host-targeting antiviral (HTA) drugs have many advantages to fight against a broad spectrum of viruses, by blocking the viral replication and overcoming the potential viral mutagenesis simultaneously. Herein, we identified two potent inhibitors of DHODH, S312 and S416, with favorable drug-like and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus (H1N1, H3N2, H9N2), Zika virus, Ebola virus, and particularly against the recent novel coronavirus SARS-CoV-2. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knocking-out cells. We also proposed the drug combination of DAA and HTA was a promising strategy for anti-virus treatment and proved that S312 showed more advantageous than Oseltamivir to treat advanced influenza diseases in severely infected animals. Notably, S416 is reported to be the most potent inhibitor with an EC50 of 17nM and SI value >5882 in SARS-CoV-2-infected cells so far. This work demonstrates that both our self-designed candidates and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-repression may have clinical potentials not only to influenza but also to COVID-19 circulating worldwide, no matter such viruses mutate or not.


Subject(s)
COVID-19
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.08.982637

ABSTRACT

BackgroundThe ongoing outbreak of COVID-19 has spread rapidly and sparked global concern. While the transmission of SARS-CoV-2 through human respiratory droplets and contact with infected persons is clear, the aerosol transmission of SARS-CoV-2 has been little studied. MethodsThirty-five aerosol samples of three different types (total suspended particle, size segregated and deposition aerosol) were collected in Patient Areas (PAA) and Medical Staff Areas (MSA) of Renmin Hospital of Wuhan University (Renmin) and Wuchang Fangcang Field Hospital (Fangcang), and Public Areas (PUA) in Wuhan, China during COVID-19 outbreak. A robust droplet digital polymerase chain reaction (ddPCR) method was employed to quantitate the viral SARS-CoV-2 RNA genome and determine aerosol RNA concentration. ResultsThe ICU, CCU and general patient rooms inside Renmin, patient hall inside Fangcang had undetectable or low airborne SARS-CoV-2 concentration but deposition samples inside ICU and air sample in Fangcang patient toilet tested positive. The airborne SARS-CoV-2 in Fangcang MSA had bimodal distribution with higher concentration than those in Renmin during the outbreak but turned negative after patients number reduced and rigorous sanitization implemented. PUA had undetectable airborne SARS-CoV-2 concentration but obviously increased with accumulating crowd flow. ConclusionsRoom ventilation, open space, proper use and disinfection of toilet can effectively limit aerosol transmission of SARS-CoV-2. Gathering of crowds with asymptomatic carriers is a potential source of airborne SARS-CoV-2. The virus aerosol deposition on protective apparel or floor surface and their subsequent resuspension is a potential transmission pathway and effective sanitization is critical in minimizing aerosol transmission of SARS-CoV-2.


Subject(s)
COVID-19 , Infections
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.29.20029439

ABSTRACT

Real time fluorescent quantitative PCR (RT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. However, due to the low viral load in patient throats and the limitations of RT-PCR, significant numbers of false negative reports are inevitable, which results in failure to timely diagnose, early treat, cut off transmission, and assess discharge criteria. To improve this situation, an optimized droplet digital PCR (ddPCR) was used for detection of SARS-CoV-2, which showed that the limit of detection of ddPCR is significantly lower than that of RT-PCR. We further explored the feasibility of ddPCR to detect SARS-CoV-2 nucleic acid from 77 clinical throat swab samples, including 63 suspected outpatients with fever and 14 supposed convalescents who were about to discharge after treatment, and compared with RT-PCR in terms of the diagnostic accuracy. In this double-blind study, we tested, surveyed subsequently and statistically analyzed 77 clinical samples. According to our study, 26 samples from COVID-19 patients with RT-PCR negative were detected as positive by ddPCR. No FPRs of RT-PCR and ddPCR were observed. The sensitivity, specificity, PPV, NPV, NLR and accuracy were improved from 40% (95% CI: 27-55%), 100% (95% CI: 54-100%), 100%, 16% (95% CI: 13-19%), 0.6 (95% CI: 0.48-0.75) and 47% (95% CI: 33-60%) for RT-PCR to 94% (95% CI: 83-99%), 100% (95% CI: 48-100%), 100%, 63% (95% CI: 36-83%), 0.06 (95% CI: 0.02-0.18) and 95% (95% CI: 84-99%) for ddPCR, respectively. Moreover, 14 (42.9 %) convalescents still carry detectable SARS-CoV-2 after discharge. Overall, ddPCR shows superiority for clinical diagnosis of SARS-CoV-2 to reduce the false negative reports, which could be a powerful complement to the current standard RT-PCR. It also suggests that the current clinical practice that the convalescent after discharge continues to be quarantined for at least 2 weeks is completely necessary which can prevent potential viral transmission.


Subject(s)
COVID-19 , Fever
17.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-202002.0373.v1

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is a new viral respiratory disease and whether pregnant women are at increased risk of infection is unknown. Viral pneumonia is an important indirect cause of maternal death. Little is known about the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during pregnancy. Objective: To describe the clinical characteristics of COVID-19 in pregnancy and their newborn infant, and we sought to explored whether the SARS-CoV-2 can be intrauterine vertically transmitted. Study Design: The study was a case series study conducted in the obstetric ward of Tongji Hospital affiliated to Huazhong University of science and technology, Wuhan, China. Demographic, clinical, laboratory and radiological profiles of the SARS-CoV-2 infection case series. A systematic testing procedure for SARS-CoV-2 infection using oropharyngeal swab, placenta tissue, vaginal mucus, and breast milk of mothers. and oropharyngeal swab, umbilical cord blood, and serum of newborns was conducted. Results: We have conducted the most thorough virological assessment to date, and we include a longer clinical observation in mother-infant dyads during hospitalization. The clinical course and outcomes of three pregnant women who acquired SARS-CoV-2 infection late pregnancy are described in mother-infant dyads. Two had caesarean delivery in their third trimester. All patients showed an uneventful perinatal course, and a successful outcome. No infants became infected by vertical transmission or during delivery. Conclusion: No evidence to suggest the potential risk of intrauterine vertical transmission in the case series and further in-depth study is needed. Both the pregnancy woman and infant showed fewer adverse maternal and neonatal outcomes.


Subject(s)
COVID-19 , Pneumonia, Viral , Respiratory Tract Diseases , Death
SELECTION OF CITATIONS
SEARCH DETAIL